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ABSTRACT

We describe a fourth version of the Global Historical Climatology Network (GHCN)-monthly (GHCNm)

temperature dataset. Version 4 (v4) fulfills the goal of aligning GHCNm temperature values with the GHCN-

daily dataset and makes use of data from previous versions of GHCNm as well as data collated under the

auspices of the International Surface Temperature Initiative. GHCNm v4 has many thousands of additional

stations compared to version 3 (v3) both historically and with short time-delay updates. The greater number

of stations as well as the use of records with incomplete data during the base period provides for greater global

coverage throughout the record compared to earlier versions. Like v3, the monthly averages are screened for

random errors and homogenized to address systematic errors. New to v4, uncertainties are calculated for each

station series, and regional uncertainties scale directly from the station uncertainties. Correlated errors in

the station series are quantified by running the homogenization algorithm as an ensemble. Additional un-

certainties associated with incomplete homogenization and use of anomalies are then incorporated into the

station ensemble. Further uncertainties are quantified at the regional level, the most important of which is for

incomplete spatial coverage. Overall, homogenization has a smaller impact on the v4 global trend compared

to v3, though adjustments lead to much greater consistency than between the unadjusted versions. The ad-

justed v3 global mean therefore falls within the range of uncertainty for v4 adjusted data. Likewise, annual

anomaly uncertainties for the other major independent land surface air temperature datasets overlap with

GHCNm v4 uncertainties.

1. Introduction

The Global Historical Climatology Network (GHCN)-

monthly (GHCNm) dataset was originally developed

at a time of limited access to digital climate data from

global land stations. Like the earliest versions of the

University of East Anglia Climate Research Unit

Temperature (CRUTEM) data (Jones et al. 1986a,b),

theGHCNmweather station records were collated from

numerous different sources through formal and informal

exchanges in an effort to build a reasonably compre-

hensive set of land station data that could be used to

provide historic perspective on surface air temperature

and precipitation fields across global land areas. Since

GHCNm, version 1, was released (Vose et al. 1992), the

dataset has undergone a number of revisions to in-

corporate additional station data as well as innovations

to data processing (Peterson and Vose 1997; Lawrimore

et al. 2011). Starting with version 2, short time-delay

updates have been part of the processing suite, which

has allowed theGHCNm station values to be used as the

land component in global surface temperature (GST)

monitoring (Hansen et al. 2010; Vose et al. 2012).

In this paper, we provide an overview of a fourth

major version of the temperature component of GHCNm.

The motivation for producing this version was to align
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the GHCNm dataset with GHCN-daily (GHCNd;

Menne et al. 2012). Up to this point, GHCNm and

GHCNd have developed along largely independent

pathways. With the release of GHCNm, version 4 (v4),

GHCNd and GHCNm now share common identifiers,

and monthly values are computed directly from GHCNd

whenever possible. The other motivation was to compute

more comprehensive uncertainty estimates for land sur-

face air temperatures over global land areas. The paper is

organized as follows: In section 2, we provide a brief

history of the dataset. In section 3, we describe the pro-

cess of combining different source archives to build a

more complete monthly temperature database as well as

the mechanisms for updating the dataset. The quality-

control process is described in section 4, and the data

trends and impact of homogenization is covered in sec-

tion 5. Section 6 provides an assessment of the un-

certainty components of the land surface air temperature

data, and comparisons to other datasets are provided

in section 7.

2. History of the dataset

The first version of GHCNm (Vose et al. 1992) was

assembled using early efforts in global data collection

like the World Weather Records program (Clayton

1927), which endures today, with other collections like

the World Monthly Surface Station Climatology man-

aged at the National Center for Atmospheric Research.

Combining these with other sources led to a version 1

dataset that provided monthly mean temperatures from

some 6000 land surface stations worldwide. Additional

efforts to acquire data sources through professional

contacts and bilateral agreements continued through

the mid-1990s and led to a new GHCNm version release

in 1997 (Peterson and Vose 1997). Version 2 was made

up of data from 31 sources and was operationalized

to provide routine quality control and short time-delay

updates. These routine updates facilitated use of GHCN

as the land component for GST records developed at

the National Aeronautics and Space Administration

(NASA; Hansen et al. 1999, 2010) and the National

Oceanic and Atmospheric Administration (NOAA;

Quayle et al. 1999; Smith et al. 2008). Version 2

processing remained essentially unchanged until the

release of version 3 in 2011, which included improve-

ments to quality-control and homogenization methods

(Lawrimore et al. 2011). These efforts to construct

GHCNm have occurred broadly in parallel with efforts

to create the CRUTEM datasets (Bradley et al. 1985;

Jones et al. 1986a,b; Jones 1994; Jones and Moberg 2003;

Jones et al. 2012). More recently, a third group, Berkeley

Earth, produced a global land surface air temperature

dataset (Rohde et al. 2013) using many of the same

sources as GHCN, but with a greatly expanded station

network relative to earlier efforts. Both CRUTEM

and Berkeley Earth provide uncertainty estimates, and

GHCNm v4 is compared to the latest versions of these

datasets in section 7. Most recently, a fourth group (Xu

et al. 2018) associated with the China Meteorological

Agency (CMA) has combined data from all three of

these global land datasets (GHCN, CRUTEM, and

Berkeley Earth) with some national datasets to produce

another land surface air temperature (LSAT) dataset

known as CMA-LSAT. The CMA-LSAT dataset was

not publicly accessible at the time of writing.

3. The v4 monthly database

GHCNm v4 monthly land surface air temperatures

are an amalgamation of many different datasets archived

at NOAA/NCEI, which have been collated under the

auspices of the International Surface Temperature Ini-

tiative (ISTI; Thorne et al. 2011; Rennie et al. 2014).

More specifically, GHCNm v4 temperature values are

based on version 1.1.0 of the ISTI monthly temperature

databank. The ISTI monthly data were produced by

merging monthly temperatures calculated from the

GHCNd dataset (Menne et al. 2012) with over 50 addi-

tional smaller source archives to create an integrated

set of monthly land station temperature records using

GHCNd as the foundational source. The aim for ISTI,

like previous versions of GHCNm, was to build the most

complete set of monthly station records possible while

also reconciling the redundancies among the separate

data sources (Rennie et al. 2014). Version 1.1.0 contains

monthly temperature series for about 32000 separate

stations. However, GHCNm v4 uses only those station

records that span a minimum of 10 years, which reduces

the total number of stations to about 26000.

The ISTI databank working group (Thorne et al.

2011) advocates for the provision of data from all pro-

cessing stages beginning with the version that is as close

to the original raw measurements as possible. These

basic sources are then reformatted centrally at NOAA/

NCEI and combined into the ISTI integrated monthly

dataset. The relevant process stages defined by the ISTI

project are as follows (Thorne et al. 2011):

d Stage 0: Original data—image or information regard-

ing primary document
d Stage 1: Original native digital format used by the

provider
d Stage 2: Data converted into a common format and

with provenance and version control information

appended
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d Stage 3: Collation of all stage-2 data including merging/

mingling of records for stations represented across mul-

tiple stage-2 sources

In essence, the 50-plus stage-1 data sources (see Table 1

from Rennie et al. 2014) were reformatted into the

common stage-2 format. The stage-2 data were then

merged to build the integrated set of station records that

comprise stage 3. In the stage-2 processing, sources with

daily data were converted to monthly averages. The

methodology for creating a monthly average follows the

recommendation of the World Meteorological Organi-

zation (WMO 2017), which specifies that a monthly av-

erage can have at most five missing days but never more

than three consecutive missing days. When these criteria

are not met, the monthly value is set to missing from that

source. In the case of redundancy among sources, monthly

data computed directly from ISTI daily data sources are

given priority over sources where only monthly values are

provided. This prioritization helps to ensure that monthly

averages can be traced back to and are consistent with the

daily data whenever possible. When monthly mean max-

imum and minimum temperatures were available, these

sources were also given higher priority over sources having

only a single monthly mean. This also helps to improve

traceability in how themonthly averageswere derived, and

an effort was made to specifically exclude stage-1 sources

that were already adjusted (homogenized) prior to being

submitted to the databank.

The merge step that leads from separate stage-2

sources to an integrated stage-3 database is performed

in a manner that compares the ‘‘master dataset’’ with

each successive candidate source that requires integra-

tion into the master set. The master dataset starts with

the highest-ranking data source in the stage-2 data and

then grows as each new source is added during the

merging process in a predetermined order agreed upon

by the ISTI databank working group. During the merge

process, two types of comparisons are conducted be-

tween station records in the master dataset and those in

the source to be added: a metadata comparison and a

data comparison.

In the metadata comparison, geographical attributes

(i.e., latitude, longitude, elevation, name, and record

start date) for each station in the new source are com-

pared to all stations in the master set. A source station

that meets the threshold for similarity with a station

in the master set is identified for further consideration

via data comparisons using the index of agreement

(Willmott et al. 1985). In the case of a sufficiently high

data similarity [see Rennie et al. (2014) for details], the

station record is merged with the existing master station

record. If the overlapping data appear to be two distinct

station records, based on lower values of the index of

agreement, the source station is added as a new station

to the master set despite the metadata similarity. Like-

wise, if no stations in the master set are sufficiently

similar based on data or metadata, the source station

is considered to be new to the master set, and its data

are added to the master database under a new station

identifier. To conduct the comparisons, the merge al-

gorithm makes use of two sets of empirical probabilities

created to quantify the likelihood of a match versus the

likelihood of being distinct.When thematch or distinctness

probabilities are inconclusive (i.e., largely overlapping),

then the source station is withheld from the master set

entirely.

The algorithm is run automatically, and there are

some merge errors whereby a source station is added as

new to the master dataset when it is in reality already

represented in the master set from a different source,

and conversely, cases when a source record is matched

to a master station record when it is in fact a distinct,

separate station record. The merge algorithm is partic-

ularly challenged in cases where a data source contains

records in which two nearby but distinct station records

were previously combined prior to being provided to

ISTI, while they also exist as separate station records in a

higher-ranking source. In such cases, the master set to

which the source is being added may already treat the

two station records as coming from separate locations.

The algorithm is then faced with a decision to merge the

composited two-station record of the lower-ranking

source with one of the two separate master records,

add it as a new distinct location, or withhold the station

records from the merged data. Because the first two

options are problematic, the best outcome is to withhold

the station; however, withholding is not guaranteed in

the framework of the empirical probabilities used to

quantify the likelihood of uniqueness and similarity

between sets of climate records. For this reason, the

CRUTEM source data, which are known to contain

numerous composited station records, were not used to

build version 1.1.0 (Rennie 2015) though they were used

in the first release (v1.0.0; Rennie et al. 2014).

GHCNd is itself made up of 30 unique sources

(Menne et al. 2012) so the ISTI, stage 3, version 1.1.0,

actually contains data from 87 unique sources. Each

monthly value is accompanied by a source flag (flag 3).

In terms of data volume, about 75% of all monthly

values originate from GHCNd. The next highest con-

tributions come from sources that have monthly values

only. These include ‘‘ghcnsource’’ [the data collected

and used for GHCNm, version 2 (v2); Peterson and

Vose 1997] at 5.6%, 4.4% from the European Climate

Assessment andData (Klein Tank et al. 2002), and 2.5%
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from ‘‘russsourceghcn’’ (a collection of numerous

monthly source archives from NCEI). As shown in

Fig. 1, the number of stations reporting values in v4 is

much higher than in version 3 (v3) throughout the pe-

riod of record, with 10 000 or more stations having av-

erage land surface temperature values after about 1950.

The majority of stations in v4 have record lengths of

about 50 years or less, but v4 also roughly doubles the

number of stations with very long records of a century or

more, as shown in Fig. 2. Improvements in spatial cov-

erage are discussed in section 6.

The ISTI, version 1.1.0, stage 3, data are updated

monthly for use in GHCMm v4 using two data streams:

new monthly values calculated from GHCNd and the

CLIMATmonthly climate summarymessages transmitted

over the WMO’s Global Telecommunications System

(GTS) that have been used in previous versions of

GHCNm. The use of GHCNd as an update source pro-

vides many thousands more stations with short time-delay

updates compared to GHCNm v3, which only provided

monthly updates from CLIMAT data for stations outside

of the United States.

4. QC checks

Following data collection and integration, quality

control (QC) is performed to flag likely errors in the

monthly temperature values. The QC consists of basic in-

tegrity, outlier, and spatial consistency checks, described

briefly in Table 1. The same checks described in Lawrimore

et al. (2011) for GHCNm v3 are applied to the v4 station

data. In the v4 process, four additional checks have been

included: 1) an interstation duplicate check similar to what

is applied in GHCNd (Menne et al. 2012), 2) a spatial

‘‘z score’’ check, 3) a streak check, and 4) a world record

extremes check. These new checks are also described in

Table 1. The process begins with four basic integrity checks

followed by an outlier check and then applies the spatial

consistency checks. Once an observation fails any quality-

control check, the value is excluded from subsequent checks.

The full period of record is quality controlled each

time the GHCNm processing system is updated to en-

sure the QC assessment can capitalize on the full period

of record as new observations are added. If an obser-

vation fails a quality-control check, the value is accom-

panied by QC flag (flag 2) that indicates what check was

failed. A value with no quality-control flag indicates that

the datum passed all checks applied or was unable to

be tested because of insufficient data. As described in

Lawrimore et al. (2011), the quality-control process was

designed so that each check has a low false-positive rate,

that is, a low probability that valid observations are

flagged as errors according to the evaluation approach

outlined in Durre et al. (2008). Nevertheless, a QC flag

can be overridden if later found by expert assessment to

be inaccurate. Any overrides, and the associated justi-

fication for making the correction, are documented in

NCEI’s Datzilla system (NOAA 2007).

5. Homogeneity testing, trends, and comparison to v3

Nearly all weather stations, at some point during their

history, undergo changes in the circumstances under

which measurements are taken (Trewin 2010). For ex-

ample, thermometers require periodic replacement or

recalibration, and measurement technology has evolved

over time. Temperature recording protocols have also

FIG. 1. Number of stations with data by month for GHCNm v4

(black)—based on the ISTI, stage 3, dataset (version 1.1.0)—and

the subsets coming from GHCNd (blue) and non-GHCNd (red)

sources.

FIG. 2. Histogram of station temperature record length.
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changed at many locations from recording temperatures

at fixed hours during the day to once-per-day readings of

the 24-h maximum and minimum. ‘‘Fixed’’ land stations

are sometimes relocated, and even minor temperature

equipment moves can change the microclimate expo-

sure of the instruments. In other cases, the land use or

land cover in the vicinity of an observing site can change

over time; this can impact the local environment that

instruments are sampling even when measurement

practice is stable. All of the above modifications to the

circumstances of recording near-surface air temperature

can cause systematic shifts in temperature readings

from a station that are unrelated to any real variation in

local weather and climate. Moreover, the magnitude of

these shifts (or inhomogeneities) can be large relative to

true climate variability. Inhomogeneities can therefore

lead to large systematic errors in the computation of

climate trends and variability not only for individual

station records but also in spatial averages.

For this reason, detecting and accounting for artifacts

associated with changes in observing practice is an

important and necessary endeavor in building climate

datasets. In GHCNm v4, shifts in monthly temperature

series are detected through automated pairwise com-

parisons of the station series using the algorithm de-

scribed in Menne and Williams (2009). This procedure,

known as the pairwise homogenization algorithm

(PHA), systematically evaluates each time series of

monthly average surface air temperature to identify

cases in which there is an abrupt shift in one station’s

temperature series (the ‘‘target’’ series) relative to

many other correlated series from other stations in the

region (the ‘‘reference’’ series). The algorithm uses

the standard normal homogeneity test (Hawkins 1976;

Alexandersson 1986) to detect breaks and seeks to re-

solve the timing of shifts for all station series before

computing an adjustment factor to compensate for any

one particular shift. These adjustment factors are based

on the average change in the magnitude of monthly

temperature differences between the target station se-

ries with the apparent shift and the reference series with

no apparent concurrent shifts. The assumption behind

TABLE 1. List of QC checks applied to monthly temperatures. The * indicates checks that are new to GHCNm v4.

Type of error Description of check

Interstation duplicate check* Identifies a station’s annual data that are duplicated in any year of another station’s data (annual data

must have at least three or more nonmissing years of data and at least 12 values (less missing values)

within 0.0158C. (E flag)

Series duplication Identifies data duplication between years within a station (must have 12 exact values, based on integer-

to-integer value comparison). (D flag)

World record extremes check* Identifies temperatures that fall outside the range of the highest and lowest monthly mean maximum

and minimum temperature values. (R flag)

Streak* Identifies runs of the same value (nonmissing) in five or more consecutive months. (K flag)

Consecutive month duplication Used to identify duplicate retransmission and mislabeling of previous month’s temperature for the

current month. Occurs in GTS-transmitted CLIMAT bulletins from 2000 to the present. (W flag)

Isolated value Identifies months that are isolated in time. From one to three consecutivemonths of nonmissing values

are identified and flagged when they are separated from other nonmissing months by 18 or more

consecutivemonths of missing values both before and after the 1–3 months that are isolated. (L flag)

Climatological outlier Identifies temperatures that exceed their respective climatological means for the corresponding station

and calendar month by at least five standard deviations using biweight mean and biweight standard

deviation (Lanzante 1996). (O flag)

Spatial inconsistency 1 Flags value when the station z score satisfies any of the following algorithm conditions. Definitions

used are neighbor 5 any station within 500 km of target station; z score 5 (biweight standard

deviation/biweight mean); S(Z) 5 station’s z score; and N(Z) 5 the set of the ‘‘five’’ closest

nonmissing neighbor z scores. (Note: This set may contain fewer than five neighbors, but must have

at least one neighbor z score for algorithm execution.)

Algorithm:

S(Z) $ 4.0 and , 5.0 and ‘‘all’’ N(Z) , 1.9

S(Z) $ 3.0 and , 4.0 and ‘‘all’’ N(Z) , 1.8

S(Z) $ 2.75 and , 3.0 and ‘‘all’’ N(Z) , 1.7

S(Z) $ 2.5 and , 2.75 and ‘‘all’’ N(Z) , 1.6

S(Z) # 24.0 and . 25.0 and ‘‘all’’ N(Z) . 21.9

S(Z) # 23.0 and . 24.0 and ‘‘all’’ N(Z) . 21.8

S(Z) # 22.75 and . 23.0 and ‘‘all’’ N(Z) . 21.7

S(Z) # 22.5 and . 22.75 and ‘‘all’’ N(Z) . 21.6 (S flag)

Spatial inconsistency 2* Identifies when the temperature z score compared to the inverse distance-weighted z score of all

neighbors within 500 km (at least two ormore neighbors are required) is greater than or equal to 3.0.

(T flag)
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this approach to relative homogenization is that spatially

isolated and sustained shifts in the mean level of one

station series relative to other highly correlated series

from nearby stations are artificial, or, at least, that they

are unlikely to have originated from regional variations

in weather and climate.

The PHA has undergone extensive evaluation and

benchmarking (e.g., Menne and Williams 2009; Venema

et al. 2012; Williams et al. 2012) and has been shown to be

effective at finding a wide variety of shifts in realistic

simulated monthly temperature datasets. The algorithm

has also been shown to improve the accuracy of anomalies

and trends in real data when compared to observations

from the U.S. Climate Reference Network (Hausfather

et al. 2016), whose stations meet the highest station siting

standards and are managed to prevent changes that cause

shifts in the data (Diamond et al. 2013). When applied to

GHCNm v4 data, the PHA finds about 70000 shifts in the

nearly 26000 temperature stations that compriseGHCNm

v4. Figure 3 shows the frequency distribution of these

shifts. As the distribution indicates, the smallest tempera-

ture shifts are not detected. Rather, the distribution is bi-

modal with peaks for detected shift magnitudes of around

60.58C and much lower frequencies of adjustments near

zero and at absolute magnitudes greater than 28C. Similar

results have been discussed in assessments of theU.S. land

surface air temperature series (e.g., Menne et al. 2009;

Williams et al. 2012), for GHCNm v3 data (Lawrimore

et al. 2011), and in comparisons of homogenization tech-

niques on simulated data (Venema et al. 2012).

There are about 1800 more negative shifts detected in

GHCNm v4 series than positive shifts, leading to an

average shift magnitude that is slightly less than zero:

20.0238C. The imbalance means that localized jumps in

monthly temperature have more often than not caused

surface air temperature trends over land stations to be

underestimated. A similar finding was also reported for

GHCNm, version 3 (Lawrimore et al. 2011). The cor-

responding shift adjustments are designed to compen-

sate for these artifacts. The result is an average global

land surface air temperature trend that is somewhat

higher for the period of record than the unadjusted data,

as shown in Fig. 4. In v4, the aggregate impact of adjust-

ments on global mean land surface air temperature trends

is an increase of about 0.28C during the period from 1880

to 2016, whereas in v3, the impact of adjustments on

global trends is closer to 0.48C during the same period.

As shown in Fig. 4, both the GHCNm v4 and v3 shift

adjustments have an especially large impact on monthly

mean temperatures from the late nineteenth century,

when thermometers in many parts of the world were

rapidly transitioning from north-facing wall mounts,

free-standing open structures, and other nonstandard

configurations to the enclosed and more standardized

Stevenson screen shelter (also known as the cotton-

region shelter). The exposure characteristics of the

nineteenth century pre-Stevenson screen installations

have been shown to have had a positive bias relative to

instruments installed in the Stevenson screens, which

provide more consistent protection from direct solar ra-

diation (Chenoweth 1993; Parker 1994). The adjustments

for the pre-1900 records in GHCNm v4 are consistent

with these assessments. After 1900, adjustments to

GHCNm v4 have relatively little impact on the global

mean land surface air temperatures until around 1940

when adjustments reduce the magnitude of anomalies

during that decade, but then increase them over the un-

adjusted data by about 0.18C through 1970 compared to

the level circa 1940. The v4 adjustments then have es-

sentially no impact on the global mean trend after 1970

(Fig. 4b). For the GHCNm v3 station data, there is more

of a monotonic impact of the shift adjustments, which

increase the trend throughout the period of record.

There are probably a variety of reasons for why his-

torical shifts in station data have caused the global

mean LSAT trends to be underestimated. In the United

States, for example, these downward jumps have re-

sulted from a combination of changes in the time of

observation for once-per-day temperature measure-

ments (systematic change from afternoon to morning

readings). Likewise, beginning in the 1930s, the location

of many of the principal weather stations around globe

moved from city centers to airports and, in certain cases,

from inside to outside urban heat islands. Additional

attribution work is nevertheless required to more fully

FIG. 3. Histogram of the distribution of shifts identified by

the PHA.
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FIG. 4. (a) Average annual global LSAT for GHCNm v3 and v4 based on unadjusted and adjusted station temperature series and

(b) mean difference between global average unadjusted and adjusted LSAT computed from GHCNm v3 and v4 stations. Time series in

both (a) and (b) are shown as 9-yr running averages.
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understand the potential causes of the shifts. Section 7

provides some comparisons to other datasets, which

provide independent assessments of the nature and

consequences of shifts in the data.

Overall, GHCNm v4 unadjusted data have higher

global mean annual trends than the unadjusted v3 for

the periods shown in Fig. 4. Notably, the shift adjust-

ments lead to much greater consistency between the

adjusted versions in terms of the trend magnitude and in

terms of the amplitude of multidecadal variations. As

shown in Fig. 5, the greater consistency in the adjusted

data occurs across latitude bands for a variety of trend

periods with the exception of the most recent two de-

cades when adjustments have relatively little impact on

trends. During this time, global mean anomalies diverge

somewhat between v3 and v4. This is a period of rapid

warming in high latitudes of the Northern Hemisphere

and trends diverge more from the global land average

than in previous periods (Cowtan and Way 2014). As

shown in Fig. 5f, adjustments in v3 actually reduce the

trend in the sparsely sampled highest latitudes of the

Northern Hemisphere for the period since 2000. This is

caused primarily by adjustments compensating formajor

shifts in anomalies during the 2000s at a few high-Arctic

stations located in theBarents andKara Sea regionswhere

large sea ice loss has occurred (see, e.g., Kintisch 2014).

Areas of sea ice loss have been accompanied by un-

precedented jumps in temperature anomalies, and these

have appeared as artificial discontinuities from a homo-

geneity perspective at the noted high-latitude stations.

In spite of the somewhat higher number of high-latitude

stations (north of 608N), v4 data are not automatically

adjusted by the PHA north of 608 because of the rapid

changes to anomaly patterns that are altering temperature

correlation scales. Rather, any apparent artificial shifts

associated with station management changes noted in the

future in those areas will require manual intervention.

6. Uncertainty budget for the GHCNm v4 data

Our approach to building an uncertainty budget for

GHCNm v4 temperatures broadly follows methods de-

scribed in Brohan et al. (2006) and Morice et al. (2012)

that have been applied to the CRUTEM dataset (Jones

et al. 2012). Further, like Morice et al. (2012), we pro-

duce an ensemble of the GHCNm v4 dataset as a way to

quantify uncertainty that arises from correlated error

structures in the data. These errors, correlated in both

space and time, originate largely from the artificial shifts

in station temperature series discussed in section 5 and

do not cancel out when spatially averaged. We describe

the major components of the uncertainty budget in the

subsections below.

a. Homogenization uncertainty

We begin by quantifying the uncertainties associated

with shifts in each specific GHCNm v4 station series by

running the PHA in ensemble mode. Calculating the ho-

mogenization uncertainty at the station level as the first

step allows the uncertainty of regional and global averages

to be scaled consistently from the station series. The total

homogenization uncertainty can be broken down into two

parts: 1) uncertainty associated with the use of the PHA

itself—termed the parametric uncertainty (e.g., Williams

et al. 2012) and 2) uncertainty associated with incomplete

homogenization caused by shifts that remain undetected

by the algorithm.

To assess the parametric uncertainty of the PHA, we

ran the algorithm as an ensemble of 1001 members. The

ensemble was generated by varying key parameters as in

Williams et al. (2012). These parameters include, for ex-

ample, the minimum number of neighbors required to be

used as a reference series and the minimum length of

time between inhomogeneities. In our case, however, the

setting combinations used (e.g., minimum number of

neighbors required) were determined to have higher skill

compared to the purely random set of combinations de-

scribed in Williams et al. (2012). Skill was defined by the

settings having a high hit rate and low false-detection rate

in the Williams et al. benchmarks as well as higher skill in

recovering the true magnitude of the underlying climate

trend in the synthetic benchmarks. The outcome of run-

ning the PHA with different parameter settings is a set of

detected shifts and adjustments for each of the GHCN

series that span the possible outcomes of using the PHA

with reasonable settings. Figure 6a provides an example of

the range of results formonthly average temperature from

Reno, Nevada, a location with a number of location and

equipment changes as well as a growing urban heat island

signal (Menne et al. 2009). Because of the many shifts

caused by station changes, there is a relatively large

parametric uncertainty associated with the PHA for the

Reno series as each version of the algorithm produces

slightly different estimates for the timing and magnitude

of the shifts. Most station series are characterized by

smaller data shifts and therefore lower parametric un-

certainty. By convention, shifts are adjusted to make the

earlier data consistent with the latest observation practice

so uncertainty increases backward in time, especially

when a station record has multiple shifts during its period

of record. In the case of Reno, there are multiple shifts

during and after the 1961–90 base period. This leads to

relatively large parametric uncertainties for the base pe-

riod mean, which in turn cause uncertainties in the mag-

nitude of anomalies even for recent data, as shown in

Fig. 6b. Nevertheless, a great deal of the uncertainty does
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FIG. 5. Trend magnitudes averaged by latitude for six different periods of record.
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FIG. 6. Parametric uncertainty for (a) mean annual temperature and (b) annual anomalies for Reno. Box-and-whiskers plots depict the

range of ensemble values. Red is unadjusted (raw) data; blue is the default PHA result. Unadjusted and default PHA time series shown as

9-yr running averages. As in (a) and (b), but for (c) total homogenization uncertainty and (d) total homogenization plus anomaly un-

certainty for annual mean temperatures at Reno.
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FIG. 6. (Continued)
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cancel out when averaged spatially, as shown in Fig. 7a,

which provides the global land annual average parametric

uncertainty.

The inability of the PHA (or other algorithms) to re-

solve small systematic shifts in the temperature series is

evident in Fig. 3 and has been discussed in previous ana-

lyses (e.g., Brohan et al. 2006; Menne and Williams 2009;

Menne et al. 2009). Though small, these undetected shifts

comprise an important part of the overall uncertainty

budget for every station record. They can also lead to er-

rors in computing regional averageswhen they do not have

an expected mean of zero, which is evidently the case for

GHCN-monthly data (Fig. 3; see also Lawrimore et al.

2011). Using some national homogenization efforts as case

studies, Brohan et al. (2006) reckoned that undetected

shifts in the CRUTEM dataset roughly follow a Gaussian

distribution with a mean of zero and a standard deviation

of 0.4 and that the average interval between undetected

shifts was on the order of 40 years. In theGHCNmv4 data,

we have the benefit of a systematic screening for shifts in

each temperature series. In particular, we can more di-

rectly estimate the size and frequency of the so-called

missing middle of the shift distribution (Thorne et al.

2016). Based on the frequency distribution of detected

shifts shown in Fig. 3, we estimate that the missed shifts in

GHCNmv4 have amean of about20.018Cand a standard

deviation of 0.2 with an average frequency of occurrence

of about 1 in 50 years. The estimated frequency of missed

breaks and detected breaks is shown in Fig. 8.

Accordingly, uncertainty from missed adjustments are

quantified by adding shift adjustments to stations series

using magnitudes and frequency drawn from the missing

middle of detected shifts. Specifically, the magnitudes are

selected from the normal distribution N(0.01, 0.2) with a

rate of occurrence drawn from a Poisson distribution

having an average frequency of 1 in 50 years, or

0.0016 month21, and each month has an equal probability

of being the date of the missed shift. This approach uses

the global distribution of detected shifts to estimate

missed shifts everywhere. Admittedly, there could be

future refinements to this approach that include, for

example, determining the potential missed shifts re-

gionally since the nature of shifts will vary nationally

according to station management policies. In addition,

the potential for missed breaks is higher in low-station-

FIG. 7. (a) Parametric uncertainty of the global LSAT and (b) parametric uncertainty (dark gray) plus total ho-

mogenization uncertainty (light gray).

FIG. 8. As in Fig. 3, but with an estimate of the distribution of

missed breaks. The green bars are the breaks detected by the PHA.

The purple bars show the estimated distribution of the missing

middle. The true distribution of breaks in the data is thought to be

close to the combination of the two histograms.
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density areas where the correlation between neighboring

stations may be lower and thus impact the signal-to-noise

ratio for shift detection. The total homogeneity uncertainty

for the Reno mean annual temperature series uncertainties

is shown in Fig. 6c, and the global average land surface air

temperature homogeneity error is shown in Fig. 7b.

b. Station anomaly uncertainty (normals uncertainty)

To produce grid box and large area averages, monthly

mean temperatures from each station are often con-

verted into anomalies (departures from a base period

mean) that have large correlation decay scales (Jones

et al. 1997). An average anomaly for each, say, 58 3 58
grid box is often calculated as the arithmetic mean of

all available station-based anomalies within the bound-

ing box. This approach, sometimes called the climate

anomalymethod (e.g., Jones et al. 1986a), requires that a

station have at least some observations during the base

period in question, usually at least for half of the 30-yr

period (Morice et al. 2012). The minimum number of

values required to compute an anomaly for use in the

NOAA GST dataset (NOAAGlobalTemp; Vose et al.

2014) has traditionally been 20 out of 30 values for the

base period (1961–90) for each calendar month. Land-

area grid boxes without any station anomalies are left

missing unless some kind of interpolation is used.

Calculation of station anomalies adds further uncertainty

to the data. As Brohan et al. (2006) note, the sampling dis-

tribution of the base period mean (climatological normal)

has a standard deviation ofsw/
ffiffiffiffi
P

p
, wheresw is the standard

deviation of the monthly temperatures for a particular cal-

endarmonthandP is thenumberof years in thebaseperiod.

Weuse this to calculate the sampling uncertainty forGHCN

station anomalies «N. In addition, in order to maximize the

number of stations with anomalies over time, we produce

normals estimates for stationswith partially or completely

missing monthly data during the 1961–90 base period.

Estimates are generated as inMenne et al. (2009) using an

optimal interpolation technique known informally as ‘‘fill

in the network’’ (FILNET). The FILNET procedure it-

erates to find a set of neighboring correlated series for

each station series requiring estimates (the target) that

minimizes the confidence limits for the difference be-

tween the target values and estimates of these values

derived using neighboring values. The difference between

the target and neighbor average is used as an offset in the

interpolation to account for climatological differences

between the target and neighbors.

As shown in Fig. 9, using estimates for base period

averages greatly expands the number of stations used to

compute global land anomalies. However, when such

base period estimates are used, an additional error term

is required to account for uncertainty in the monthly

estimates. This error term was derived from a resam-

pling exercise in which successive numbers of values

were censored for stations with complete data during the

1961–90 base period, with the censored data then being

estimated from surrounding stations. The root-mean-

square error was then calculated between the observed

30-yr mean and the mean with varying numbers of es-

timated values during the base period. The normal esti-

mate error is then calculated as a function of latitude and

number of missing years during the base period. The two

error terms (sampling and estimate) are treated as in-

dependent and «N1E 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
«2N 1 «2E

p
, and «E is zero when no

estimates are required. The anomaly uncertainty is also

considered to be uncorrelated in space. Notably, for sta-

tions with partial records during the base period, the use

of estimates can reduce the overall anomaly uncertainty

in spite of the error associated with the estimates.

The combined homogenization and anomaly error for

Reno is shown in Fig. 6d. On the whole, Fig. 6 indicates

that the unadjusted Reno mean annual temperatures

often fall outside the combined range of homogenization

and anomaly uncertainty as does the trend since 1950 and

since 1979 due in large part to the localized upward shifts

(localized jumps) since 1970 thought to be associated with

the growing urban heat island (UHI) signal around the

airport site. Regarding the detection of UHI, we have

evaluated some additional prominent UHI examples:

Phoenix, Arizona, and Shenzhen, China. These additional

case studies, like Reno, suggest that when homogeniza-

tion testing is conducted on serialmonthly data aswedo in

GHCNm v4, the target-neighbor difference series are at

least as good or better treated as a series of step changes

with like signs rather than as a trend. Consequently, at

least in these cases, the PHA is able to detect and account

for the growth of a local UHI signal. Given that these

cases are consistent with theHausfather et al. (2013) study

FIG. 9. Time series of the percent of 58 3 58 grid boxes with any land

area that contains temperature anomalies fromat least one land station.
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that the PHA is effectively accounting for local UHI sig-

nals in the United States, we do not include a separate

uncertainty component for UHI, but rather include UHI

as part of the homogenization uncertainty.

c. Instrument exposure bias from nonstandard screens

We adopt exactly the same approach to nonstandard

screening discussed in Morice et al. (2012), which was

also used in Brohan et al. (2006). Their work was in turn

based on the exposure model described in Folland et al.

(2001), which was itself based on Parker (1994). The

model is intended to account for uncertainty stemming

from the introduction of new types of thermometer

screens, especially during the period of the late nineteenth

and early twentieth centuries. Unlike the previous un-

certainty components, the exposure uncertainty is applied

at the regional level. For each ensemble member, a single

random number is drawn from a normal distribution that

reflects the 1s exposure uncertainty for the latitude range.

For grid boxes in the 208S–208N range, exposure is asso-

ciated with a 1s uncertainty of 0.28C before 1930, which

decreases linearly to zero by 1950. Outside of that range,

the 1s uncertainty is 0.18C prior to 1900, which decreases

linearly to zero by 1930.

d. Gridbox sampling error

Even though estimates are used, where necessary, to

compute a 30-yr normal, the number of stations within

any particular 58 3 58 grid box still varies considerably by

region. In addition, those anomalies that are available in

any particular grid box may deviate from the spatial av-

erage that would result from denser spatial sampling. The

gridbox sampling error seeks to quantify the uncertainty

of gridbox average throughout the period of record.

Jones et al. (1997) described a method for calculating this

uncertainty, which they determine to be a function of the

number of stations with values in the grid box, the vari-

ability of the temperature within the grid box, and the

correlation between the available stations. More specifi-

cally, Jones et al. (1997) used the following equation to

calculate the gridbox sampling error:

SE2 5
s2
i r(12 r)

11 (n2 1)r
(x) , (1)

where s2
i is the mean standard deviation in the grid box,

n is the number of stations in the grid box, and r is the

average interstation correlation. Like Brohan et al.

(2006) and Morice et al. (2012), we use this approach to

calculate the gridbox sampling error when we calculate

gridbox averages. Although the GHCNm v4 ensemble

members do have some variation in their anomalies for

grid boxes, the global mean error associated with grid-

box sampling is essentially the same for each member.

e. Spatial coverage uncertainty

The last major uncertainty that we address is the

spatial coverage uncertainty. As shown in Fig. 9, the

percentage of land cover with station anomalies is im-

proved with the use of estimated normals but is still

lower during the early decades of the period of record.

This percentage is relatively constant after about

1950, but parts of the high latitudes, Africa, and South

America remain less sampled than other regions. The

spatial coverage uncertainty addresses the error that can

arise from a global mean land surface air temperature

anomaly calculated from spatially incomplete data. Like

Brohan et al. (2006), we use the NCEP–NCAR re-

analysis (Kalnay et al. 1996) to compute the root-mean-

square error between a global land average calculated

from spatially complete reanalysis data compared to

one using a data mask determined by the available

GHCNm v4 monthly temperature anomalies. For each

data month, we compute the difference between the

complete and incomplete reanalysis means for each of

the 30 years from 1986 to 2015. This period was selected

to include the period after 1998 when the consequences

of excluding parts of the Arctic from the global mean

calculation are significant (Cowtan and Way 2014). The

spatial uncertainty for mean annual values using the

GHCNm v4 coverage is shown Fig. 10. In Fig. 11, we

illustrate the global impact of each of the major un-

certainties covered in this section.

7. Comparison to other datasets and methods

Comparison to other datasets is done to provide an

assessment of the structural uncertainty of the data,

FIG. 10. Spatial coverage uncertainty with and without estimates

for missing station anomalies during the 1961–90 normals period.
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which refers to the uncertainty that is revealed when

using independent methods to address the same prob-

lem (Thorne et al. 2005). To begin, we compare the

annual time series with uncertainty estimates for

GHCNm v4 to those provided for CRUTEM, version 4

(CRUTEM4; Jones et al. 2012; Morice et al. 2012) and

the Berkeley Earth Surface Temperature dataset

(Rohde et al. 2013). The annual average time series and

their associated uncertainties are shown in Figs. 12 and

13. The figures indicate that the uncertainties for the

three datasets overlap in all years. Not surprisingly, the

magnitude of uncertainties between GHCNm v4 and

CRUTEM4.5.0.0 are similar since they are based on a

more or less common set of factors (though the GHCM

v4 uncertainty range is slightly less than CRUTEM). In

contrast, the uncertainty estimates for Berkeley Earth

are considerably smaller than GHCNm and CRUTEM.

Berkeley Earth has also recently provided an analysis of

their raw data spatial averages. These averages are pro-

duced without parsing each station series into separate

segments that begin and end at times of apparent shifts.

Using their approach known as the scalpelmethod (Rohde

et al. 2013), the step of identifying the timing of shifts has

the same goal as the PHA. The impact of the shifts can

then be accounted for in the averaging approach. As

shown in Fig. 14, the Berkeley Earth group finds that the

distribution of shifts in data collectively cause a negative

cool bias in the early part of the record up to the period

around World War II, similar to GHCNm. Their scalpel

method yields an increase in the global mean land surface

air temperature of about 0.28C over the raw data from the

late nineteenth century to about 1950. After 1950, parsing

the data with the scalpelmethod has relatively little impact

on the global land average anomalies but does lead to a

slight decrease relative to the rawdata. This small decrease

associated with their parsing approach may be the reason

the Berkeley Earth anomalies are near the low range of

the GHCNm v4 uncertainty for the last couple of decades.

In Fig. 15, we also compare the shifts identified by

the published configuration of the PHA (Menne and

FIG. 11. Total uncertainty for GHCNm v4 mean annual global

LSAT anomalies (parametric plusmissed breaks plus anomaly plus

spatial coverage uncertainty). Darker greys show homogenization

uncertainties (parametric and missed breaks) and the lighter greys

show anomaly and spatial coverage uncertainties. The uncertainties

are displayed as cumulative so the uncertainty bounds depicted in

each lighter shade includes the uncertainty of the darker shades.

FIG. 12. Mean annual global LSAT uncertainties for GHCNm v4

and Berkeley Earth. Dark shades of pink indicate areas of overlap.

FIG. 13.Mean annual global LSAT uncertainties for GHCNmv4

and CRUTEM4.5.0.0. Dark shades of pink indicate areas of

overlap.
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Williams 2009) to an independent method of identifying

shifts called the Bayes factor algorithm (BFA; Zhang

et al. 2012). As the histogram shows, the PHA and BFA

methods find a similar number of shifts (about 71 000 for

the PHA and 74 000 for the BFA) in the GHCNm v4

station series. Moreover, the BFA breaks coincide with

PHA breaks about two-thirds of the time, and when

coincident, the detected shifts are of the same sign 97%

of the time. The mean (median) absolute difference in

the estimated magnitude of shifts that both methods

identify is about 0.218C (0.138C) with the BFA finding

fewer smaller breaks than the PHA. This is largely a

consequence of the PHA being run with station history

information that informs the algorithm of the timing of

potential shifts in the United States related to station

moves as well as instrument and time of observation

changes. The use of station histories allows the PHA to

identify smaller changes than is possible in the absence

of documented changes.

Finally, in Figs. 16 and 17 we compare GHCNm v4

station data averages to some smaller datasets that have

been homogenized and averaged independently at the

national level. Two examples are provided: one for

Switzerland based on Begert and Frei (2017) and an-

other for Australia based on the Australian Climate

Observations Reverence Network–Surface Air Tem-

perature (ACORN-SAT) dataset (Trewin 2013). In the

case of Switzerland, the GHCNm adjustment process

yields adjusted time series that are in closer agreement

with the Begert and Frei series than the GHCNm un-

adjusted series, even though the station composition

differs considerably between v3 and v4. Notably, the

GHCNm v3 adjustments increase the long-term trend

FIG. 14. Global mean difference between adjusted and unadjusted GHCNm v3, v4, and Berkeley Earth datasets.

FIG. 15. Histogram of shifts identified by the PHA and BFA ho-

mogenization algorithms.
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for Switzerland whereas the v4 adjustments decrease the

long-term trend, but both lead to increased consistency

with the Begert and Frei (2017). For Australia, both the

v3 and v4 adjustments reduce the magnitude of anom-

alies in the early record, but muchmore so in the case v3.

As a result, the v4 adjusted long-term trendmore closely

resembles the ACORN-SAT trend, but GHCNm shows

a somewhat higher trend in the last two decades.

Nationally homogenized station series like these Swiss

and Australian examples are used directly in building

the CRUTEM and CMA-LSAT datasets. Both Jones

et al. (2012) and Xu et al. (2018) advocate for using

FIG. 16. Mean annual temperature for Switzerland. Anomalies are shown using a 9-yr moving

average.

FIG. 17. Mean annual temperature for Australia. Anomalies are shown using a 9-yr moving

average.
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datasets homogenized at the national level wherever

possible in building their global land surface air tem-

perature datasets. Their reasoning is that local re-

searchers are in a better position to know the details of

station changes and may have access to additional sta-

tion data not available in global archives, which may

improve homogenization efforts. On the other hand,

Berkeley Earth and GHCNm use uniform and com-

prehensive approaches to homogenization and provide

both unadjusted and adjusted versions of the data, which

makes the impact of adjustments easier to trace, and

the independent approaches provide some measure of

the structural uncertainty in the data. Our independent

homogenization approach also facilitates keeping the

station series updated consistently since nationally

homogenized datasets may be one-off efforts or updated

on an irregular basis. We argue therefore that there are

advantages to both rationales, and the approaches used

to produce CRUTEM and CMA-LSAT are perhaps

best viewed as complementary to the methods used in

Berkeley Earth and GHCNm. Comparisons like those

shown in Figs. 16 and 17 provide some insight into whether

national groups are making similar adjustments to the

global-scale applications as GHCNm. These two national

cases, as well as comparisons at the global mean level,

suggest that these independent adjustments are leading to

greater consistency among the different datasets.

8. Conclusions

In summary, GHCNm v4 is made up of more than

25 000 land-based station records, an increase of 18 000

stations from versions 2 and 3. The larger number of

stations relative to earlier versions as well as the ex-

panded use of stations in the calculation of anomalies

improves spatial coverage of the dataset throughout the

period of record. The majority of the monthly average

land surface air temperatures—approximately 75%—

that make up GHCNm, version 4, station records are

calculated directly from GHCNd using World Meteo-

rological Organization standards. This improves the

traceability of how monthly means are calculated. The

monthly averages are routinely updated and quality

controlled for random errors. Systematic errors are ad-

dressed via homogenization. In addition, uncertainties

for each station series are provided by running the ho-

mogenization algorithm as an ensemble and then adding

additional uncertainties associated with incomplete ho-

mogenization and conversion of the time series to

anomalies. Further uncertainties are addressed at the

regional level; the most important of which is spatial

coverage uncertainty. Uncertainties provided at the

station level can be summed consistently up to the

regional and global averages. This ensemble approach

can be combined with ensembles of the Extended Re-

constructed Sea Surface Temperature (ERSST) dataset

(Liu et al. 2015; Huang et al. 2016) for a more com-

prehensive assessment of global surface temperature

uncertainties.

Compared to GHCNm v3, homogenization has a

smaller impact on v4 data, but the adjustments lead to

greater consistency between GHCNm v3 and v4 than

when the unadjusted data are compared, and the v3

series falls within the calculated range of uncertainty for

the v4 dataset. Adjustments for shifts also lead to greater

consistency between datasets homogenized independently

at the national level. Likewise, the uncertainty ranges of

the other major independent land surface air temperature

datasets overlap with the GHCNm v4 uncertainty ranges

throughout the period of record, and the impact of ac-

counting for shifts is broadly consistent between GHCNm

and the Berkeley Earth dataset. Finally, it should be noted

that this initial release of GHCNm v4 contains only mean

monthly temperature.Meanmonthlymaximumandmean

monthly minimum temperatures will be provided in a fu-

ture release.
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